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Abstract—Cloud computing has generated much interest in the research community in recent years for its many advantages, but has
also raise security and privacy concerns. The storage and access of confidential documents have been identified as one of the central
problems in the area. In particular, many researchers investigated solutions to search over encrypted documents stored on remote
cloud servers. While many schemes have been proposed to perform conjunctive keyword search, less attention has been noted on
more specialized searching techniques. In this paper, we present a phrase search technique based on Bloom filters that is significantly
faster than existing solutions, with similar or better storage and communication cost. Our technique uses a series of n-gram filters to
support the functionality. The scheme exhibits a trade-off between storage and false positive rate, and is adaptable to defend against
inclusion-relation attacks. A design approach based on an application’s target false positive rate is also described.

Index Terms—Conjunctive keyword search, Phrase search, Privacy, Security, Encryption.

F

1 INTRODUCTION

A S organizations and individuals adopt cloud technolo-
gies, many have become aware of the serious concerns

regarding security and privacy of accessing personal and
confidential information over the Internet. In particular, the
recent and continuing data breaches highlight the need for
more secure cloud storage systems. While it is generally
agreed that encryption is necessary, cloud providers often
perform the encryption and maintain the private keys in-
stead of the data owners. That is, the cloud can read any
data it desired, providing no privacy to its users. The storage
of private keys and encrypted data by the cloud provider is
also problematic in case of data breach. Hence, researchers
have actively been exploring solutions for secure storage on
private and public clouds where private keys remain in the
hands of data owners.

Boneh et al. [1] proposed one of the earliest works on
keyword searching. Their scheme uses public key encryp-
tion to allow keywords to be searchable without revealing
data content. Waters et al. [2] investigated the problem for
searching over encrypted audit logs. Many of the early
works focused on single keyword searches. Recently, re-
searchers have proposed solutions on conjunctive keyword
search, which involves multiple keywords [3], [4]. Other
interesting problems, such as the ranking of search results
[5], [6], [7] and searching with keywords that might contain
errors [8], [9] termed fuzzy keyword search, have also
been considered. The ability to search for phrases was also
recently investigated [10], [11], [12], [13]. Some [14] have
examined the security of the proposed solutions and, where
flaws were found, solutions were proposed [15].

In this paper, we present a phrase search scheme which
achieves a much faster response time than existing solu-
tions. The scheme is also scalable, where documents can
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easily be removed and added to the corpus. We also describe
modifications to the scheme to lower storage cost at a small
cost in response time and to defend against cloud providers
with statistical knowledge on stored data. We begin by
presenting the communication framework in section 2 and
various backgrounds including related works in section 3.
Although phrase searches are processed independently us-
ing our technique, they are typically a specialized function
in a keyword search scheme, where the primary function is
to provide conjunctive keyword searches. Therefore, we de-
scribe both the basic conjunctive keyword search algorithm
and the basic phrase search algorithm in section 4 along
with design techniques in section 4.3. Performance analysis
and experimental results are included in section 5 and 6.

2 COMMUNICATION FRAMEWORK

We’ll describe our keyword search framework using two
parties: The data owner and an untrusted cloud server.
Our algorithms can easily be adapted to the scenario of
an organization wishing to setup a cloud server for its
employees by implementing a proxy server in place of the
data owner and having the employees/users authenticate
to the proxy server. A standard keyword search protocol is
shown in figure 1. During setup, the data owner generates
the required encryption keys for hashing and encryption
operations. Then, all documents in the database are parsed
for keywords. Bloom filters tied to hashed keywords and n-
grams are attached. The documents are then symmetrically
encrypted and uploaded to the cloud server. To add files
to the database, the data owner parses the files as in setup
and uploads them with Bloom filters attached to the cloud
server. To remove a file from the data, the data owner simply
sends the request to the cloud server, who removes the file
along with the attached Bloom filters. To perform a search,
the data owner computes and sends a trapdoor encryption
of the queried keywords to the cloud to initiate a protocol
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Fig. 1. Communication framework for keyword search over encrypted
data

to search for the requested keywords in the corpus. Finally,
the cloud responds to the data owner with the identifiers to
the requested documents.

Our framework differs from some of the earlier works
[1], [2], where keywords generally consist of meta-data
rather than content of the files and where a trusted key
escrow authority is used due to the use of Identity based
encryption. When compared to recent works, our setup
is equivalent to that of [10], [16], where an organization
wishes to outsource computing resources to a cloud storage
provider and enable search for its employees, and similar
to [6], [17], where the aim is to return properly ranked files.
Most other recent works related to search over encrypted
data have considered similar models such as [11], where the
client acts as both data owner and user.

Note that, depending on the application, the encrypted
documents may or may not require retrieval once the query
is resolved. Should retrieval be required, further privacy
issues may arise. These issues are considered in oblivious
storage [18] and private information retrieval schemes [19].
Our discussions will mainly restrict to the protocol leading
to the query resolution. Direct retrieval is assumed where
appropriate to better compare against existing solutions for
phrase search.

2.1 Security

In terms of security, we assume a semi-honest cloud server,
which is interested in learning about stored data but will
follow our keyword search protocol as described and will
not modify or misrepresent any data in order to gain
an advantage. Two of the main security issues regarding
keyword searches are the privacy of the document sets
and the privacy of the queried keywords. Briefly, a secure
keyword search protocol should prevent the cloud server
from obtaining non-negligible amount of information on the
stored documents or the keywords in the query requests.
Note that, in our target application, users are employees of
the data owner’s organization and are authorized to search
for any documents in the data set. Should an application
requires that users be restricted from accessing certain files,
an access control system such as [20] would be required to
verify the matched results and returned only those which
the user has the required credential to access.

Our basic scheme in section 4.2 achieves these goals
under the assumption that the cloud has no prior knowl-
edge on the stored data. Should the cloud provider has
significant statistical knowledge on the stored data, such as
the distribution of the keywords, it may be able to infer
partial knowledge on its content. Under the security model
where the cloud provider has some knowledge over the
distribution of keywords or queries on the stored data, we

describe modifications to the basic scheme which would
offer protection against statistical attacks in section 4.6 and
inclusion-relation attacks in section 4.4.

3 BACKGROUND

Boneh et al.’s work [1] on an encrypted keyword search
scheme based on public key encryption was among the most
cited in the area. The author considered a scenario where a
user wishes to have an email server verify messages associ-
ated with certain keywords without revealing the content of
the emails. As sample application, the scheme would allow
an urgent encrypted email to be flagged to the attention of a
user while others sent to appropriate folders. The proposed
solution uses identity based encryption and a variant using
bilinear mapping. Another interesting application was pro-
posed by [2] regarding searching through encrypted audit
logs, where only relevant logs are retrieved. The scenario
involves an auditor which acts as a key escrow authorizing
investigators to search audit records. The scheme uses an
extension of Boneh’s scheme using identity based encryp-
tion. Song et al. [21] also considered the scenario introduced
by Boneh et al. and proposed a probabilistic search solution
based on stream cipher.

Many recent works have focused on conjunctive key-
word search. Ding et al. [3] extended Boneh et al.’s scheme
using bilinear mapping to perform multiple keyword search
and described a solution that did not include expensive
pairing operations in the encryption and trapdoor gener-
ation phase. Kerschbaum et al. [4] considered the search
of unstructured text, where positions of keywords are un-
known. The use of encrypted index for keyword search
was examined in [22] and a scheme secure against cho-
sen keyword attack was proposed. The ranking of search
results was looked at by Wang et al. in [17]. The authors
described a solution based on the commonly used TF-
IDF (Term Frequency x Inverse Document Frequency) rule
and the use of order preserving symmetric encryption. Liu
et al. [23] considered the search for potentially erroneous
keywords termed fuzzy keyword search. The index-based
solution makes use of fuzzy dictionaries containing various
misspelling of keywords including wildcards.

Solutions for searching for phrases over encrypted data
were only recently proposed by researchers. The main dif-
ference between conjunctive keyword search and phrase
search is that the queried keywords must appear contigu-
ously in the specified order in addition to all being present
in the document.

Zittrower et al. [10] were the first to investigate the prob-
lem. His solution uses a keyword-to-document index and
a keyword location index. The keyword-to-document index
provides the mapping of keywords to the documents which
contain them while the location index contains the position
of the keywords within each document. The researchers
identified potential statistical attacks on the indexes. Since
certain words are more common than others in every natural
language, the distribution of keywords in the indexes could
reveal information on the documents. To defend against
statistical attack, truncation of encrypted keywords was
used to generate false positives in query results to hide the
true search terms. To identify false positives, indicators are
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included in the index entries and also stored client-side.
When compared to other solutions, the scheme requires a
fairly high communication and computational cost due to
the large amount of false positives used to provide security.
Much of the computation is also performed client-side.

Tang et al. [11] focused on the security of phrase search
in a solution with provable security using normalization.
Their technique also uses two index tables: a keyword-
to-document index and a keyword chain table. Central to
their solution is the keyword chain table used to verify
existence of pairs of keywords. In order to achieve provable
security against statistical attacks, the keyword chain table
is normalized against all documents in the corpus. Random
data is used to fill in the table so that the same number
of elements is listed under every entry. This results in a
uniform distribution of entries in the table. However, the
solution has a high storage cost as the index tables require
significant storage, which hinders its practicality.

Poon et al. [12] proposed an alternative solution which
slightly relaxes the security requirements but is able to
achieve much improved storage and computational cost.
The key to the improvement is the design of indexes con-
sidering the distribution of keywords in natural languages.
As in [10], [11], two indexes are used, mapping keywords to
documents and keywords to their locations. By recognizing
the almost exponential distribution of keywords, the entries
in the keyword location tables are split into pairs to achieve
normalization without the high cost of storing unused ran-
dom data. However, the use of encrypted indexes and the
need to perform client-side encryption and decryption may
still be computationally expensive in certain applications.

In [13], Poon et al. proposed a phrase search scheme that
achieved further reduction in storage cost. The technique
exploits the space-efficiency of Bloom filters to perform con-
junctive keyword search and phrase search. Similar to other
techniques, a set of keyword to document Bloom filters and
a set of keyword location filters are used. The former enables
the verification of existence of keywords in individual docu-
ments, by simply adding the keywords as members, and the
latter allow the identification of keyword locations, by con-
catenating keywords to their locations prior to adding them
as members. The conceptually simple scheme achieves the
lowest storage cost among existing solutions. However, its
space-efficiency comes at the cost of requiring a brute force
location verification during phrase search. Since all potential
locations of the keywords must be verified, the amount of
computation required grows proportionally to the file size.
As a result, the scheme exhibits a high processing time.

3.1 Bloom filters

Researchers [22], [15], [13] have proposed the use of Bloom
filters for conjunctive keyword search to reduce storage cost
and provide security in the form of false positives.

Bloom filters are space-efficient probabilistic data struc-
ture used to test whether an element is a member of a set. A
Bloom filter contains m bits, where k hash functions, Hi(x),
are used to map elements to the m-bits in the filter. The
Bloom filter is initially set to all zeros. To add an element, a,
to the filter, we compute Hi(a) for i = 1 to k, and set the
corresponding positions in the filter to 1. For example, for

Fig. 2. Relationship between keyword set, trapdoor and search result[15]

k = 2 and m = 7, to add ‘Bell’ to the filter, we compute
H1(Bell) = 2 and H2(Bell) = 5. Setting the position 2
and 5, the Bloom filter becomes 0, 1, 0, 0, 1, 0, 0. To test for
membership of an element, b, in a sample Bloom filter, we
compute Hi(b) for i = 1 to k, the element is determined to
be a member if all corresponding positions of the sample
Bloom filter is set to 1. For example, ‘Bell’ would be a
member of the Bloom filter, 0, 1, 1, 0, 0, 1, 1.

While Bloom filters have no false-negatives, it can falsely
identify an element as member of a set. Given k hash
functions, n items inserted and m bits used in the filter,
the probability of false positives is approximately p =
(1− e−kn/m)k and minimum false positive rate is achieved
when k = m

n ln2.

3.2 Inclusion-Relation attacks

In [15], Cai et al. described an inclusion-relation (IR) attack,
where two sets of query results, a and b, with a being
a subset of b, would imply the queried keywords that
led to b includes keywords that led to a. A cloud server
with some knowledge on the statistical properties of the
search terms and has access to sets of trapdoors and their
associated search results can potentially discover some of
the keywords.

Our technique can be adapted to defend against such
attacks by allowing a set of keywords to map to many pos-
sible queries (trapdoors) and the inclusion of false positives
in search results. Also, since different sets of keywords can
have the same bits in the Bloom filter being set to 1, different
keyword sets can lead to the same query. Figure 2 shows
different mappings of keywords to trapdoors and search
results for various conjunctive keyword search schemes. In
section 4.4, we described our type C design, which was
suggested to provide the best defense against IR attacks [15].

4 PHRASE SEARCH SCHEME BASED ON BLOOM
FILTERS

In a keyword search scheme, Bloom filters can be used
to test whether a keyword is associated with a docu-
ment. Many existing phrase search schemes [10], [11] use
a keyword-to-document index and a location/chain index
to map keywords to documents and match phrases. We de-
scribe an alternative approach using Bloom filters to support
this functionality with an emphasis on response time. Our
scheme can be summarized as the use of multiple n-gram
Bloom filters, Bn

Di
, to provide conjunctive keyword search

and phrase search.
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4.1 Conjunctive keyword search protocol
To provide conjunctive keyword search capability, each doc-
ument, Di, is parsed for a list of keywords kwj . A Bloom
filter of size m is initialized to zeros. Each keyword is hashed
using a secret key to produce Hkc(kwj) and passed into k
Bloom filter hash functions to set k bits in the Bloom filter.
This results in a 1-gram Bloom filter for each document:
B1

Di
= {b1, b2, ...bm} where bi ∈ {0, 1}. The document col-

lection, D = {D1, D2, . . . , Dn}, is encrypted and uploaded
along with the Bloom filters to the cloud server. The Bloom
filters are then organized into a matrix with the first row
containing the filter B1

D1
for the first document and the last

row containing B1
DN

. Its transpose is stored as a Bloom filter
index IBF where each row corresponds to a bit in the Bloom
filters. Note that the ith row in IBF contains information on
which document’s filter has its ith bit set. This arrangement
allows us to quickly identify the documents for a specific
query by working only with bits that are set.

To perform a conjunctive keyword search for a set of
keywords kw′ = {kw1, kw2...kwq}, the data owner per-
forms the Bloom filter hash computation to determine the
set of bit locations, Q = {q1, q2, ...qx}, that would be set
in the query filter and sends them to the server. The server
then computes T = IBF,q1&IBF,q2 ...&IBF,qx , where IBF,qi

is the qthi row in IBF . The index of bits that are set in T
are identified as the matched documents. Once the matches
are identified, the cloud server can then return the matched
document identifiers or the encrypted documents depend-
ing on the application requirements. Note that the size of the
set Q is much smaller than m since the query filter contains
only a few keywords while a conjunctive keyword Bloom
filter contains all the keywords in a document. Therefore,
this approach can identify the matched documents much
faster, performing fewer operations than individual filter
verification.

Note that an entry in the Bloom filter index has as
many bits as the number of documents. A query generally
involves only a few words and very few bits set. These
lead to only a few rows being extracted for matching.
Furthermore, when performing the bit-wise AND testing,
computer processors would generally test 32 or 64 bits at
a time. Should a test results in all zeroes for any subset of
bits in a row, the corresponding documents are no longer
candidates and the subset of bits no longer require testing
in subsequent rows.

4.2 Phrase search protocol
To provide phrase search capability, each document is
parsed for lists of keyword pairs and triples. For example,
‘Happy Day, Happy Night’ would yield the pairs, ‘Happy
Day’, ‘Day Happy’ and ‘Happy Night’, and the triples,
‘Happy Day Happy’ and ‘Day Happy Night’. A keyed
hash for each keyword pair is computed, Hkp

(kwj |kwj+1),
and passed into k hash functions and the result is used
to set k bits in the Bloom filter, B2

Di
. Keyword triples are

similarly hashed to generate the Bloom filter, B3
Di

. The
resulting Bloom filters for pairs and triples are organized
into matrices with the first rows containing the filters Bx

D1

for the first document. The matrices are then transposed to
produce the pairs and triples Bloom filter indexes, IBF 2 and

IBF 3 , which are stored alongside the encrypted documents
on the cloud.

To perform a phrase search for the keyword sequence,
kw′ = {kw1, kw2...kwq}, the data owner must first per-
form the Bloom filter hash computation of the pair,
Hkp

(kw1|kw2), to determine the set bits in the query filter
if the phrase contains two keywords. If the phrase contains
more than two keywords, the hashes of triples within the
phrase, Hkp

(kwj |kwj+1|kwj+2) where j = 1 to q − 2, are
evaluated instead. The set bit locations are sent to the server,
who then computes T = IBF 2,q1&IBF 2,q2 ...&IBF 2,qx ,
where IBF 2,qi is the qthi row in IBF 2 if the phrase contains
two keywords, and similarly using IBF 3 for longer phrases.
The set bits in T identify the matched documents. That is,
for each set bit index, i, in T , the following is true:

{Hkp
(kw1|kw2)} ∈ B2

Di
(1)

for pairs and

{Hkp
(kwj |kwj+1|kwj+2)} ∈ B3

Di
, where j = 1 to q − 2,

(2)
for triples.

Once the matches are identified, the cloud server re-
turns the matched document identifiers or the encrypted
documents depending on the application requirements. Our
phrase search scheme requires only 2 messages to be sent: a)
The initial message to the cloud server containing the set bit
locations of the query Bloom filter T for pairs or triples and
b) The response to the data owner containing the query re-
sults from the phrase search performed locally by the cloud.
Performing the phrase search requires k(q − 2) hash com-
putations for phrases of length q > 2 and a simple bit-wise
AND operations. The protocol is computationally efficient.
Its performance is dependent on the length of the phrase
and largely independent of the size of the document set.
Due to the space efficiency of Bloom filters, our scheme also
requires less storage than index based schemes. Since filters
are assigned per document, adding or removing documents
consists simply of adding or removing the associated filters,
providing a scalable solution.

While a document containing a phrase will always be
correctly identified as such, our scheme can falsely identify
documents as containing a phrase when it doesn’t. The
source of the false positive is not only the natural property of
Bloom filter, but also in how a phrase match is determined.
If a user queries n-grams for n = 2 or n = 3, our scheme
has no false positives other than ones arising from the use
of Bloom filters. For n > 3, however, it is possible that
keyword triples within a phrase appear in different parts
of a document without the complete phrase being present.
Using the previous example of ‘Happy Day Happy Night’,
a false positive would occur if a document does not contain
the phrase but instead contains ‘Happy Day Happy Day’
and ‘Snowy Day Happy Night’. The validity of the scheme
is based on low occurrence of such scenarios in practical
settings.

4.3 Designing for target precision in large corpuses
In information retrieval, precision and recall are often used
to measure the performance of a system in its ability to
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retrieve/identify relevant data.
Recall is defined as the fraction of documents relevant to

a query that is retrieved/identified:

Recall =
TP

TP + FN
(3)

Precision is defined as the fraction of re-
trieved/identified documents that are relevant to the
query:

Precision =
TP

TP + FP
(4)

When applied to our search schemes, they represent a
measure of the quality of the matching results. Since our
scheme has no false negatives, it achieves 100% recall rate.
However, precision tends to decrease when querying longer
phrases due to a higher number of false positives relative to
true positives. While not ideal, it is unlikely that this would
negatively affect the performance of querying corpuses of
typical size, due to the uniqueness of long phrases, as will
be demonstrated in section 6.2.

When working with particularly large corpuses, the
number of Bloom filters can be used to tune the precision
rate. One may notice that the number of false positives can
be reduced by extending the scheme to include a quadruple
Bloom filter, B4

Di
, and beyond, at the cost of extra storage.

On the other hand, one can also reduce storage by using
fewer filters. While it’s possible to use only the pairs filter,
it’s generally preferable to use at least one for pairs and
one for triples when processing English documents since 2-
grams and 3-grams are fairly common in the language.

Suppose an application have a target precision, Precn,
for n-grams and a corpus with N documents, we can
estimate the probability that a file be matched by computing
pT = 1− (1−un)

x′−n+1, where x′ is the average number of
keywords per file and un is the probability of two random
n-grams being identical. Then, the number of true positive is
approximately pTN and the target number of false positive
is

FPT =
pTN − PrecnpTN

Precn
. (5)

Assume the probability that a file being retrieved as false
positive is pf , then the probability that no more than FPT

files were found as false positive is

p =

FPT∑
i=1

(
N

i

)
pif (1− pf )

i. (6)

Suppose we wish that the probability p > 90%, the
above equation can then be solved for a target pf .

Given the probability, pf(n,m), that an n-gram is a false
positive when verified using a m-gram Bloom filter and the
number of n-grams in a file, fs, the probability that the
file is retrieved as a false positive is 1 − (1 − pf(n,m))

fs. If
we desire a false positive probability of no greater than pf ,
then we would verify if 1 − (1 − pf(n,m))

fs < pf . If the
inequality holds, the target is achieved otherwise a m + 1-
gram Bloom filter is added. The process repeats until the
inequality holds.

Note that when choosing a target precision, Precn, it is
helpful to consider the expected number of files returned
per n-gram query. For example, if a query is expected to
return less than 5 results, a precision of 80% would yield
only 1 false positive per query on average. Depending on
the application, it may be then preferable to target shorter
sequences such as n − 1 where the higher number of false
positive could be problematic.

4.4 Modified phrase search scheme against IR attacks
The basic scheme can be adapted to provide additional
defense against inclusion-relation attacks where an attacker
has access to a significant amount of query Bloom filters and
search results associated with known queries. To do so, we
modify our algorithm to a type C searching algorithm noted
in figure 2, which was proposed in [15] to defend against
such attacks.

In an IR-secure scheme, z terms are randomly removed
from the beginning and the end of the query phrase. Due to
the uniqueness of long phrases, more terms can be removed
to generate false positives. It was determined, based on our
experimental data, that z = bq/3c for q ≤ 6 and z = q − 3
for q > 6 were effective. For example, a query phrase,
kw′ = {kw1, kw2, kw3}, would be queried randomly as
kw′ = {kw1, kw2} or kw′ = {kw2, kw3}. This results in
an increase in false matches that only contain sub-phrases,
severing the inclusion relation between search terms and
query results.

4.5 Security
At rest, the cloud server contains the encrypted documents,
EKDi

(Di), the conjunctive keyword Bloom filter, BDi
, and

the n-gram Bloom filters, Bn
Di

. The security and privacy of
the documents are ensured by the symmetric encryption
algorithm. The words added to the conjunctive keyword
Bloom filter and the n-grams added to the n-gram Bloom
filters are hashed with a secret key to prevent the cloud
from learning the keywords contained in the documents.

The situation is more complex during query. In order
to achieve high efficiency, the basic scheme uses the same
secret key for the Bloom filters of different documents. As
a result, it is possible for the cloud to knowingly verify
the existence of an encrypted keyword or n-gram in every
document in the corpus. Given enough queries, the cloud
could build a statistical distribution of encrypted words.
If the cloud has any prior knowledge on the statistics of
the corpus, such as that the language is English or that
it contains legal documents, it may be able to learn par-
tial information on the data. An intuitive defence against
this statistical attack would use different private keys for
different documents. However, this would incur significant
overhead since filters would have to be computed and
verified separately for every document. Instead, we propose
a hybrid approach as described in the following section.

4.6 A hybrid approach against statistical attacks
In a typical keyword search scheme, the majority of queries
consist of conjunctive keyword searches. Being a specialized
search option, phrase searches occur far less frequently.
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Therefore, the availability of statistical information for in-
dividual keywords would be far greater than that for n-
grams. To defend against statistical attacks, the more secure,
albeit more expensive, approach of encrypted indexing is
used for conjunctive keyword matching, where the statistics
of individual keywords are better protected. The approach
provides information theoretic security for individual key-
words [12] at the cost of having to perform client-side
encryption/decryption and to re-encrypt the index when
adding files. The use of n-gram Bloom filters for phrase
search is retained. In addition to the low availability of
statistical information due to the infrequent occurrence of
phrase searches, the number of distinct n-grams is also far
greater than the number of distinct keywords [24], resulting
in a distribution that shows individual probability of occur-
rence several orders lower than that of keywords [25]. This
means it is significantly more difficult to mount a statistical
attack against n-grams because far more data is required
to recognize the rare occurrences of n-grams while, at the
same time, far fewer data is available. Table 1 illustrates
this property on our experimental data set. When adding
or removing files from the corpus, it should be noted that
index update can be delayed to avoid constantly decrypting
and re-encrypting the index. That is, the data owner can
maintain a small local index which includes recently added
and removed files until the next scheduled index update.

In the hybrid approach, separate resources are allocated
to conjunctive keyword search and phrase search. An en-
crypted keyword-to-document index, I , is used to support
conjunctive keyword search. With the standard setup, two
sets of n-gram bloom filters, B2

Di
and B3

Di
, are used to

support phrase search.
The encrypted index approach to conjunctive keyword

search proceeds as follows. A document collection, D =
{D1, D2, . . . , Dn}, is parsed for a list of keywords, kwj . An
keyword-to-document index, I , is generated mapping key-
words to documents such that I(kwj) = {da, db, . . . , dn},
where di = 1 if kwj is linked to the document and di = 0
otherwise. The resulting index is encrypted and uploaded
to the cloud server:

I(HK(kwj)) = {EK(da, db, . . . , dn)}. (7)

To perform a conjunctive keyword search for a set of
keywords, kw′ = {kw1, kw2, . . . , kwq}, the data owner
computes their hashes, HK(kw′), using a secret key and
sends them to the cloud server. The encrypted index en-
tries are returned to the data owner, who computes the
intersection of the decrypted index entries and identifies the
matching documents:

DK(I(HK(kw1))) &DK(I(HK(kw2))) · · · &DK(I(HK(kwq))), (8)

where & is a bitwise AND operation. If retrieval of the
encrypted documents is required, the data owner would
then initiate a second round of communication by sending
the document identifiers to the cloud server, who would
then return the requested documents.

The phrase search protocol, which runs independently,
in the hybrid construction is identical to that described in
section 4.2. Therefore, the response time, communication
cost and computational cost associated with phrase search
are also identical.

TABLE 1
Average number of distinct n-grams for a sample of 150 documents

Number of words n = 1 n = 2 n = 3
37626 4833 32023 36884

5 PERFORMANCE ANALYSIS

As outlined in section 4.2, our scheme requires two Bloom
filters per document for the purpose of phrase search, one
for storing pairs and another for triples. Note that the
conjunctive keyword Bloom filters are not required for the
purpose of phrase search. The two sets of filters require
N(b2+b3) bits of storage on the cloud server, where b2 is the
size of a pairs Bloom filter, b3 is the size of a triples Bloom
filter and N is the number of documents in the corpus. The
data owner needs only to store cryptography keys. Since
all existing schemes include conjunctive keyword search
capability, we have included the 1-gram filter, b1, in our
comparison table 3 and 4. The communication cost of our
scheme is similar to [13]. The proposed protocol requires
only two messages to be sent, one containing the set bit
locations of the query Bloom filter for pairs or triples and
the other containing the matched results. Assuming the
queried phrase contain q > 2 keywords and that k is small,
the scheme requires (q − 2)klog2(b3) bits to be sent to the
cloud server and ulog2(N) bits to be sent to the data owner,
where u is the number of matched documents. In terms of
computation, the scheme requires hashing of triples in the
phrase using a secret key, with a total of 3(q − 2)b bits,
where b is the average number of bits per keyword, and
k(q − 2) standard hash computations on the client side to
determine the set bit locations of the query filter sent to
the server. Upon receiving the query, the server performs
a bitwise AND operation between the Bloom filter index
entries, each consisting of N bits, for the k(q − 2) set bit
location. The matches are then immediately available from
the result. The response time of the scheme is dependent
on the execution time of the server and the client, and
also the transmission time and propagation delay of the
messages. The most expensive computation in the protocol
is the 3(q−2)b keyed hashing performed by the client while
non-cryptographic hashing and bit-wise AND are both very
efficient operations. In addition, the scheme also enjoys a
short transmission time due to a compact description of the
query filter and requires the minimal propagation delay of
a single round-trip communication.

Zittrower’s proposal [10] uses an encrypted keyword
truncation table that maps distinct keywords with the same
truncated ciphertext to different index values. The table
allows the data owner to differentiate between entries asso-
ciated with different keywords but have the same truncated
ciphertext in the index table stored on the cloud. Assuming
optimal representations, this table requires x(log2(x) + b)
bits, where x is the number of distinct keywords in the
corpus and b is the average number of bits per keyword.
On the cloud server, two index tables, one mapping trun-
cated encrypted keywords to documents and another to
their locations within the documents, are stored. The two
tables require x(12 + p′ log2(N)) and x′(12 + gy) bits
respectively, where p is the average number of documents
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associated with a keyword in the corpus and y is the
number of bits needed to store a location value. On average,
The scheme results in 300 collisions among the encrypted
keywords to hide the true search terms. In other words,
a query response contains, on average, results belonging
to 300 other unrelated keywords, leading to a significant
amount of wasted bandwidth and processing. In terms of
communication, this implies that up to 300ui log2(N) bits
are spent transferring unrelated data during conjunctive
keyword search, where ui is the number of candidate docu-
ments matched in the search, and 300g(y + log2(x)) + salt)
bits are wasted during phrase search for every keyword
in the query. When combined with the desired query re-
sults, a 12q bits query would yield a response with up to
301ui(log2(N) + 301q(g(y + log2(x)) + salt)) bits of data
from the cloud server. Regarding computational cost, the
data owner must decrypt all returned entries and, using
the encrypted keyword truncation table, identify the results
belonging to the searched keywords while discarding col-
lisions. Then, based on the decrypted locations, the data
owner identifies documents where the keywords appear in
order. Due to the need for client-side encryption and the
large amount of false positives processed during search,
the scheme has a higher computational requirement than
our proposed scheme, where the most expensive operation
consists of hash computations. Although the protocol results
in only a single round-trip delay to determine matches,
it has a long transmission time due to the high number
of false positives. If retrieval of matched documents is
required, a second round would also be needed by sending
the matched identifiers to the cloud server. The response
time also degrades due to a high processing time because
of a significant amount of decryption operations required at
the client which likely possesses much lower computational
power than the cloud server.

Tang’s scheme [11] also uses a table mapping keywords
to index values kept locally by the data owner. On the
cloud server, a keyword-to-document index and a keyword
chain table are stored. While the keyword-to-document
index is similar to other existing solutions, the keyword
chain table is a structure that allows the verification of
keyword chains, combining the use of cryptographic hash
and randomly generated location indicators. In order to
achieve information theoretic security across all parame-
ters, it was proposed that the keyword chain table to be
applied to the entire data set and normalized according to
the highest occurring keyword in the document set. In all,
x(log2(x) + b) bits of storage is required by the data owner
and x(log2(x) + N) + Nx′(h + d(h + y)) bits of storage is
required by the cloud, where b is the average number of
bits per keyword, h is the number of bits used to store a
hashed keyword or location value, y is the number of bits
to store a location value and d is the number of instance
of the most frequent keyword in the corpus. While the
client-side storage requirement is low, the keyword chain
table, analogous to the location index, is several orders of
magnitude greater, due to the normalization to the value
of d. In terms of communication, the client sends qlog2(x)
bits to the server during the conjunctive keyword search
phase and receives qN bits as results. For matching phrases
using the keyword chain table, the data owner sends

ui(qlog2(x) + (q − 1)h) bits to the cloud server, where ui is
the number of candidate documents, and receives ulog2(N)
bits in matching document ID’s. While the communication
cost of the scheme is an improvement over Zittrower’s
scheme, communicating index entries and keys is still more
costly than the transmission of a single Bloom filter required
in our proposed technique. One of the main advantages of
Tang’s approach is the asymmetric distribution of compu-
tational load, where the cloud server, typically possessing
significant computational power, performs the majority of
the computations. During the conjunctive keyword search
phase, the client performs a table lookup and computes
the keyed-hash of the queried keywords and sends them
to the cloud server. The server then performs a table lookup
for the queried entries and return the results to the data
owner. Given the candidate documents, the client hashes the
keywords under a different secret key in addition to q − 1
chain keys for the chain digests. Upon receiving the hashed
phrase and chain keys, the server finds the corresponding
entries in the index using binary search, and performs up
to d(q − 1) keyed hashes. Due to the size of the keyword
chain table, a significant amount of hash computation is
required to verify a phrase, especially when a candidate
document contains all the keywords but not in consecutive
order, where the maximum number of hashes would then
be required to reject it as a match. The processing time of
the scheme is largely dependent on the server’s ability to
compute the keyed hashes. The two phase protocol also
requires two round-trip delays. Compared to our proposed
technique, the scheme has a higher propagation delay and
a higher processing time since the hashing algorithm used
in Bloom filters is non-cryptographic, which is significantly
faster than the cryptographic hash functions used in Tang’s
scheme.

In [12], Poon proposed a solution to address the high
communication cost in Zittrower’s scheme and the high
storage cost noted in Tang’s scheme. The central idea was to
exploit properties of natural languages to better design the
indexes. By considering the almost exponential distribution
of words in most languages, it was shown that splitting key-
words location entries into pairs dramatically reduces the
storage cost of the system. The scheme requires data owners
to maintain a dictionary mapping keywords to index values
and a list showing the number of times that keywords were
split in each file. It was found that the data owner would
require x(log2(x)+b) bits for the conjunctive keyword index
and 0.27x′N(log2(x

′) + log2(k
′/2)) bits of storage for the

split tables. The cloud server would store the encrypted
keyword-to-document index using x(log2(x) +N) bits and
the location index tables using 2.5x′N(h + 2y) bits, where
h is the number of bits used to represent a hashed keyword
and y is the number of bits to store a location value. During
the first phase of a phrase query, qlog2(x) bits would be sent
to the cloud to identify candidate document and qN bits
would be received by the data owner. On average, a query
for a single keyword’s locations requires 2.5 encrypted
keywords to be sent due to splitting. A location query for
a random keyword in phrase would then require sending
2.5h bits to the server. Given ui candidates identified in the
conjunctive keyword search, 2.5hui bits would need to be
sent. In response, the cloud returns the encrypted location
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entries requiring 2.5ui ∗ 2y = 5uiy bits. Hash signatures
of the phrase at the identified starting locations are then
sent to cloud for matching, requiring uig(h + log2(N) + y)
bits, where g is the number of times a keyword appears
on average per document. In terms of computation, the
cloud server must look up the index entries on each step
and perform hash computations of qb bits at uig locations.
The data owner must encrypt q keywords for conjunctive
keyword search and hash one random keyword for location
query. Then, uig encryption and hash computation of q
keywords are required to generate the hash signatures for
matching. The scheme presents a significant improvement
in terms of practicality over Zittrower and Tang’s scheme
by offering a much lower storage cost at the cloud and
not having to rely on a large number of false positives to
maintain security. Phrase search is performed in two rounds
of communication, as in Tang’s scheme, with the first step
identifying candidate documents that contain all keywords.
As in Zittrower’s scheme, one additional round would be
required for retrieval of matched documents if required.

In [13], the authors noted that further reduction in
storage can be achieved and proposed a scheme based
on Bloom filters that focused on minimizing storage cost.
For conjunctive keyword search, all distinct keywords in a
document is placed in a conjunctive keyword filter to enable
keyword-to-document search. For phrase search, keywords
are concatenated with their locations and placed inside
a keyword location filter to enable location queries. The
scheme requires two Bloom filters per document, one for
mapping keywords to document and one for determining
keyword location. The filters are stored on the cloud server,
requiring N(bk + bl) bits of storage, where bk is the size of a
conjunctive keyword Bloom filter, bl is the size of a keyword
location Bloom filter and N is the number of documents in
the corpus. The data owner retains only cryptography keys.
In terms of communication cost, the protocol requires that
the keyed hash of the keywords for each filter be sent to the
cloud server, and the results of the query returned to the
data owner. Altogether, the scheme requires 2qh bits to be
sent to the cloud server and ulog2(N) bits to be sent to the
user, where h is the number of bits per hashed keyword
and u is the number of matched documents. Regarding
computational cost, the data owner must perform 2q keyed
hash computations to generate the trapdoor query. Upon
receiving the query, the server performs qk Bloom filter
hash computations to produce the query filters. A bitwise
AND operation for each conjunctive keyword filter in the
document set identifies the candidate documents. Then, for
each candidate document, rk Bloom filter hash computation
is needed to find the locations of the first word of the
phrase, followed by rik hash computation for each addi-
tional word to determine matches, where r is the number
of keywords in the candidate document and ri is the num-
ber of matches for the ith word in the phrase. Generally,
r � ri. Therefore, approximately uirk hash computations
are required during phrase search, where ui is the number
of matched documents during conjunctive keyword search.
The space-efficiency of Bloom filters allowed the scheme to
achieve the lowest storage cost among existing solutions
but it required a brute-force approach to identify keyword
locations. Although incremental hash functions can improve

the verification speed, the computational cost remains high
and increases proportionally to the size of the documents.
While the scheme requires a single round of communication,
the response time of the scheme suffers due to the high
processing time required to identify keyword locations.

Table 3 shows a comparison of our schemes to existing
techniques. For clarity, some terms that do not have a
significant impact on the associated cost were omitted. Note
that the variants, our scheme (speed) and our scheme (stor-
age) are defined in section 6.1 and our scheme (hybrid/*)
corresponds to the hybrid approach described in section 4.6.
While our scheme (speed) exhibits a high storage cost in
order to achieve the fastest processing time by taking full
advantage of the Bloom filter index, variants with different
values of t, such as our scheme (storage), can achieve fast
processing time with a storage cost similar to [12] and 3
times lower than Zittrower’s scheme. Regarding the hybrid
approach, the technique differs from the scheme in section
4.2 only in its conjunctive keyword search functionality. Its
phrase search functionality remains the same. Therefore,
its response time, communication cost and computational
cost associated with phrase search are identical to our base
scheme. The sole difference is the storage cost of the system
where resource dedicated to conjunctive keyword search,
namely the index, requires higher storage than a 1-gram
Bloom filter.

6 EXPERIMENTAL RESULTS

To compare our results against existing phrase search
schemes, we evaluate our algorithm on a corpus consisting
of 1500 documents made available by Project Gutenberg
[26]. The documents were preprocessed to exclude headers
and footers, which include copyright, contact and source
information to reduce skewing in the statistics of the data
set. Stop words are also omitted. To determine the statistical
properties of the corpus and the performance for the various
schemes, the Natural Language Toolkit [27] was used.

The design of Bloom filters is important to our scheme’s
performance. In particular, the use of a Bloom filter index
requires the filters to be of the same length. Recall that the
equation for false positive rate in section 3.1 is as follows:

p = (1− e−k
n
m )k (9)

Figure 3 shows false positive rates between 1% and 10%
relative to the number of hash functions and the number
of bits needed per entry. A small filter size is preferable in
terms of storage. A low false positive rate would reduce
communication and computational cost. In particular, using
a small number of hash functions greatly improves the
execution time since the computational cost is proportional
to the number of hash function used. In practice, the number
of hash functions, k, needed to minimize false positive rate
is rarely used since there is very little improvement in false
positive rate as we increase the number of hash functions
past a certain threshold. Using a single hash function, k = 1,
would reduce the computational cost, but also more than
doubles the storage cost to achieve the same false positive
rate. The high variance in false positive rate when k = 1
can also be problematic for corpus with high variance in
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document sizes. As shown in the figure 4, the number of
bits per entry and the false positive rate is fairly stable for
k ≥ 2 and m/n ≥ 10.

6.1 Selecting the Filter Size

Optimizing for response time requires normalizing the filter
size to take advantage of the Bloom filter index. A simple
design approach is to ensure that the parameters meet the
requirements in the worst case scenario. If an application
requires a certain false positive rate, then the filter size can
be chosen such that the document with the largest number
of distinct keywords or n-grams in the corpus falls within
the required rate. In most practical scenarios, it would
be the largest document in the corpus. All other smaller
documents would exhibit lower than required false positive
rate. However, this approach has a high cost in storage. In
corpuses where there’s a large variance in document sizes,
much of the storage is wasted. For example, if we consider
the entire Gutenberg corpus of 15620 English documents,
the largest document contains 2.8 million words. However,
only 88 documents contain more than 140 thousand words
and half of the documents in corpus contain less than 20
thousand words. In such scenarios, a trade-off between
response time and storage cost can be made by using t sets
of filter sizes where only one of the document set would
conform to the largest filter size used, effectively generating
t Bloom filter indexes. In the previous example, we can have
the largest 88 documents conform to the largest filter size,
the following 7722 documents conform to the document
containing 140 thousand words and the remaining 7800 doc-
uments conform to the document containing 20 thousand
words. This simple change would lead to 30 times lower
storage requirement than the fastest solution. This approach
requires a slight modification of the protocol in section 4.2,
where the output of the k hash functions would be sent to
the server instead of the set bit locations. To determine the
set bit locations, the server simply computes the hash values
modulo the filter sizes. The server then proceeds to compute
T as usual for each set of filters to determine matches. Note
that the limit case of setting t = N , where every document
uses exactly the filter size needed to achieve the desired false
positive rate, would require the least amount of storage, but
would also require the server to verify each filter separately.
Nonetheless, it would still achieve much improved response
time when compared to existing approaches. We will refer to
the approach with t = 1 as “Our scheme (speed)” and t = N
as “Our scheme (storage)” in table 3 and 4 to highlight that
the former is designed for the highest speed and the latter is
designed for the lowest storage cost possible with a trade-off
in speed. It should be noted that the best value for t depends
on the application and especially on the distribution of file
sizes. If all documents have the same number of distinct
keywords or n-grams, there is no advantage in storage for
choosing t > 1 as all filter sizes would be the same.

Having considered various trade-offs, the operating
point was heuristically chosen for a false positive rate of
p = 5% with k = 2 and m/n = 7.9 for our experimental
corpus. A more stringent false positive rate of 1% can be
achieved by increasing the number of bits per entry to
m/n = 19 while keeping the number of hash functions

at k = 2, maintaining a high response time at the cost of
more storage. Although we could improve the false positive
rate by using more hash functions, increasing the number
of hash function from k = 2 to k = 3 would increase our
computational cost by 50%, leading to lower performance.

The storage requirement is dependent on the number
of items that the filters must store. Using the simple ap-
proach of normalizing according to the largest document,
we would require the number of bits needed to store the
number of distinct keywords in the largest document for
each conjunctive keyword filter. Similarly, the number of
distinct pairs and triples determine the size of each pairs or
triples filter. The values of various parameters of the sample
Gutenberg document set are listed in table 2. To provide
consistent comparison with existing schemes, we consider
1530 documents from the Gutenberg corpus. At 7.9 bits
per entry and optimized for speed, a conjunctive keyword
Bloom filter would require b1 = x′′m/n = 41kB, a pairs fil-
ter would require b2 = r2m/n = 2.17mB and a triples filter
would require b3 = r3m/n = 2.66mB. Should we wish to
minimize storage, we would require b1 = x′′m/n = 3.82kB,
a pairs filter would require b2 = r2m/n = 23.43kB and a
triples filter would require b3 = r3m/n = 28.7kB.

Usually, the number of distinct words/pairs/triplets is
proportional to the document size. However, in the event
of outliers, this could allow an attacker to easily recognize
the non-conforming documents. To defend against this, one
can design a minimum filter size to file size ratio so that
a file with an unusually small number of distinct words
would have a filter size larger than what is needed to protect
the file’s identity. Equivalently, a minimum file size can also
be set so that a file requiring an unusually large filter size
would be padded to have a correspondingly large file size
associated with it.

6.2 Long phrases

Long phrase queries are often used to locate known items
rather than to locate resources for a general topic. In many
cases, the goal is to identify a single document. Longer
phrases also have a very low probability of occurrence and
yield fewer matches. Therefore, even with a precision rate of
50%, we would rarely see more than a single false positive
for a search query of longer phrases. In our experiment,
we never encountered more than a single false positive in
queries with phrases containing more than 4 keywords. The
small amount of false positives can also be easily identified
and removed client-side. As a result, the effect of low
precision rate in longer phrases should not have a noticeable
detrimental effect in practice.

Table 4 summarizes the results of the schemes on the
sample Gutenberg document set with the experimental
values for the various parameters outlined in table 2. For
the hash values of keywords and locations, we assumed
that each would require 16 bits in all cases. English words
have an average length of 5 letters. Hence, b is set to 40.
Since communication and computational costs are query-
dependent, related parameters are kept in the formulas and
dominant terms were retained for clearer comparisons. In
practical scenarios, ui > u > q and Enc(x) ≈ Dec(x) >
Hk(x) > Hbf (x) ≈ H(x) > LUT (x) ≈ Mod(x) > And(x),
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Fig. 3. False positive rate (p) as a function of the number of hash function
(k) and bits per entry (m/n)
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Fig. 4. False positive rate (p) as a function of the number of hash function
(k) and bits per entry (m/n) (close up)

where Enc(x), Dec(x), Hk(x), Hbf (x), H(x), LUT (x),
Mod(x) and And(x) represent respectively the cost of an
encryption of x bits, a decryption of x bits, a keyed hash
computation of x bits, a Bloom filter hash computation of
x bits, a standard hash computation of x bits, a table look
up of x elements, the modulus computation of x numerical
values and bit-wise AND operation of x bits . Note that
the communication and computational cost values for Zit-
trower’s scheme are worst-case estimates. As shown in the
table, our schemes require far lower computational cost on
both the data owner and the cloud server. The advantage
is particularly notable on the cloud where only basic opera-
tions are needed. Our scheme (storage) also achieves almost
5 times lower storage cost than Zittrower’s scheme. In terms
of communication, our schemes require only a single round
trip much like Tang’s solution, but requires fewer bits to be
sent by either party. It is also interesting to note that the bulk
of the communication/computation cost is not dependent
on the number of matches for the keywords.

7 CONCLUSION

In this paper, we presented a phrase search scheme based
on Bloom filter that is significantly faster than existing
approaches, requiring only a single round of communication
and Bloom filter verifications. The solution addresses the
high computational cost noted in [13] by reformulating
phrase search as n-gram verification rather than a location
search or a sequential chain verification. Unlike [10], [12],
[13], our schemes consider only the existence of a phrase,
omitting any information of its location. Unlike [11], our
schemes do not require sequential verification, is paralleliz-
able and has a practical storage requirement. Our approach
is also the first to effectively allow phrase search to run inde-
pendently without first performing a conjunctive keyword
search to identify candidate documents. The technique of
constructing a Bloom filter index introduced in section 4.2
enables fast verification of Bloom filters in the same manner
as indexing. According to our experiment, it also achieves
a lower storage cost than all existing solutions except [13],
where a higher computational cost was exchanged in favor
of lower storage. While exhibiting similar communication
cost to leading existing solutions, the proposed solution
can also be adjusted to achieve maximum speed or high
speed with a reasonable storage cost depending on the
application. An approach is also described to adapt the
scheme to defend against inclusion-relation attacks. Various
issues on security and efficiency, such as the effect of long
phrases and precision rate, were also discussed to support
our design choices.
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TABLE 2
Properties of the sample document set

Average number of documents associated with a keyword, p′ 885.6
Total number of documents, N 1530
Total distinct keywords, x 285396
Average number of keywords per document, r 30364.7
Maximum number of keywords per document, r′ 2815415
Average number of distinct keywords per document, x′ 3959.6
Maximum number of distinct keywords per document, x′′ 42489
Average number of distinct pairs per document, r2 25177.6
Maximum number of distinct pairs per document, r2′ 2252332
Average number of distinct triples per document, r3 30842.5
Maximum number of distinct triples per document, r3′ 2759106
Average number of times each keyword appears per document, g 5.6
Number of instance of the most frequent keyword, d 10757
Average number of instance of most frequent word per document, k′ 369.1

TABLE 3
Comparison of phrase search schemes

Storage Communication (download) Computation

Zittrower[10] data owner x(log2(x) + b) 301ui(log2(N) + 301q(g(y+ log2(x)) + salt)) 301uiDec(301q(g(y+log2(x))+salt))+LUT (x)
cloud x(p′ log2(N) + 12) + N x′(12 + gy) 12q LUT (x− x/212) + uiLUT (x′ − x′/212)

Tang[11] data owner x(log2(x) + b) qN + ulog2(N) LUT (x) +Hk(qb) + uiHk(qb) + uiHk(b(q− 1))
cloud x(log2(x) + N) + N x′(h + d(h + y)) qlog2(x) + ui(qlog2(x) + (q − 1)h) LUT (x) + LUT (Nx′) + d(q − 1)Hk(h)

Poon[12] data owner x(log2(x)+b)+0.27x′N(log2(x
′)+log2(k

′/2)) qN + 5uiy qDec(p′log2(N)) + ui(2.5(Hk(log2(N) + b) +
Dec(gy)) + g(Enc(qb) +H(qb+ log2(N) + y)))

cloud x(log2(x) + N) + 2.5x′N(h + 2y) qlog2(x) + ui(2.5h + g(h + log2(N) + y)) LUT (x) + uiLUT (2.5x′) + uigH(qb)

Poon[13] data owner 0 ulog2(N) 2Hk(qb)
cloud N(bk + bl) 2qh kHbf (qb) + uirkHbf (b + log2(r))

Our scheme data owner 0 ulog2(N) Hk(3(q − 2)b) + k(q − 2)Hbf (16)
(speed) cloud N(b1 + b2 + b3) (q − 2)klog2(b3) And(k(q − 2)N)

Our scheme data owner 0 ulog2(N) Hk(3(q − 2)b) + k(q − 2)Hbf (16)
(storage) cloud N(b1 + b2 + b3) (q − 2)klog2(b3) Mod(k(q − 2)N) + And(Nb3)

Our scheme data owner x(log2(x) + b) ulog2(N) Hk(3(q − 2)b) + k(q − 2)Hbf (16)
(hybrid/speed) cloud x(log2(x) + N) + N(b2 + b3) (q − 2)klog2(b3) And(k(q − 2)N)

Our scheme data owner x(log2(x) + b) ulog2(N) Hk(3(q − 2)b) + k(q − 2)Hbf (16)
(hybrid/storage) cloud x(log2(x) + N) + N(b2 + b3) (q − 2)klog2(b3) Mod(k(q − 2)N) + And(Nb3)

TABLE 4
Comparison of phrase search schemes for a sample of 1500 documents

Zittrower[10] Tang[11] Poon[12] Poon[13]
data owner cloud data owner cloud data owner cloud data owner cloud

Storage 1.98MB 392.5MB 1.98MB 242.8GB 5.78MB 139.3MB 0MB 49.47MB
Communication 16740.5uiq kb 12q bits 10.6u + 1530q bits (34q − 16)ui bits 1530q + 80ui bits 18q + ui(34q − 16) bits 10.6u bits 32q bits

Computation 17 ∗ 106uiDec(q) uiLUT (3959) uiHk(40(2q − 1)) 104(q − 1)Hk(16) 5.6uiEnc(40q) + Dec(9369q) 5.6uiH(40q) 2Hk(40q) 6 ∗ 104uiHbf (55)

Our scheme (speed) Our scheme (storage) Our scheme (hybrid/speed) Our scheme (hybrid/storage)
data owner cloud data owner cloud data owner cloud data owner cloud

Storage 0MB 7.28GB 0MB 85.6MB 1.98MB 7.27GB 1.98MB 130.55MB
Communication 10.6u bits 44(q − 2) bits 10.6u bits 30(q − 2) bits 10.6u bits 44(q − 2) bits 10.6u bits 30(q − 2) bits

Computation Hk(120(q − 2)) And(3060(q − 2))) Hk(120(q − 2)) Mod(3060(q − 2)) Hk(120(q − 2)) And(3060(q − 2))) Hk(120(q − 2)) Mod(3060(q − 2))
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